Enhancing multimodality functional and molecular imaging using glucose-coated gold nanoparticles.

نویسندگان

  • G Feng
  • B Kong
  • J Xing
  • J Chen
چکیده

AIM To describe how pegylated glucose-coated gold nanoparticles (PEG-Glu-GNPs) can help improve computed tomography (CT) imaging. MATERIALS AND METHODS PEG-Glu-GNPs were designed for use as an imaging nanoprobe to act an effective contrast agent for both CT and PET scans. Twelve BALB/c mice were divided into two groups: mice with injected with PEG-Glu-GNPs and control mice. The mice were examined using high-resolution micro-CT at different time intervals (24 h, 7 days, and 15 days) after the injection of the particles. Greyscale density and CT attenuation values were determined to trace the excretion of the particles over time. RESULTS Tumour contours were easily distinguished from surrounding tissue in mice injected with PEG-Glu-GNPs but not controls. This distinction was still visible at 7 days, but not at 15 days post-injection. CONCLUSION Molecular imaging technology has enabled the development of a new generation of imaging probes. These sophisticated probes can visualize biological processes or enable early diagnosis of diseases in vivo. Compared to conventional CT images and PET scans, PEG-Glu-GNPs significantly improved image quality at the cellular and molecular level, which can significantly aid the early detection of cancer or cancer metastases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles

Objective(s): Biological applications of gold nanoparticles have limitations because of the toxic chemicals used in their synthesis. Curcumin can be used as reducing as well as capping agent in synthesis of GNPs to eliminate the cytotoxicity. Conjugation of curcumin to gold also helps in increasing its solubility and bioavailability. Materials and Methods: Here we report synthesis of gold nanop...

متن کامل

Applications of gold nanoparticles for medical imaging

Background & Aim: Molecular imaging enables us to non-invasively visualize tissue microstructures and lesion characterization, allowing accurate diagnosis of diseases at early stages. A successful molecular imaging requires a nontoxic contrast agent with high sensitivity. Nowadays, a wide range of nanoparticles have been developed as contrast agents for medical imaging modalities. Here, we revi...

متن کامل

Gold-Coated Fe3O4 Nanoroses with Five Unique Functions for Cancer Cell Targeting, Imaging and Therapy.

The development of nanomaterials that combine diagnostic and therapeutic functions within a single nanoplatform is extremely important for molecular medicine. Molecular imaging with simultaneous diagnosis and therapy will provide the multimodality needed for accurate diagnosis and targeted therapy. Here, we demonstrate gold-coated iron oxide (Fe3O4@Au) nanoroses with five distinct functions, wh...

متن کامل

Radiolabeled Nanoparticles for Multimodality Tumor Imaging

Each imaging modality has its own unique strengths. Multimodality imaging, taking advantages of strengths from two or more imaging modalities, can provide overall structural, functional, and molecular information, offering the prospect of improved diagnostic and therapeutic monitoring abilities. The devices of molecular imaging with multimodality and multifunction are of great value for cancer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical radiology

دوره 69 11  شماره 

صفحات  -

تاریخ انتشار 2014